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Abstract 
In this paper, by constructing Free-energy Functionals, the Thomas-Fermi theory has been 

extended to include the non-zero temperature effects in many-particle systems. 

Using the Sobolev-Lieb and the Hőlder inequalities, the constructed Free-energy Functionals 

were put into a form from which an extended Thomas-Fermi equation was derived. Hitherto, 

in this work, the two states Ψ0(r) and Ψ1(r), corresponding respectively to the square root of 

two densities 0(r) and 1(r), had been used to construct the new free-energy Functionals 

F[0(r)] and F[1(r)]. The states Ψ0(r) and Ψ1(r) were required to be mutually orthogonal, and 

the functional F[0(r)]  was considered as the ground state functional while F[1(r)] was the 

excited state functional with temperature ≥ 0.  From the functionals, the electron density 

matrix was derived and finally the total energy was computed for many-electrons system 

under the influence of the Coulomb and Yukawa Potentials. Various results were obtained 

and discussed. 

Keywords: Thomas-Fermi theory, Sobolev-Lieb inequality, Density functional method, Free-
Energy functional, Functional derivative. Extremization, Density matrix, Electron radial 
distribution  
 
 
1. Theory  

1.1        The Thomas-Fermi theory  

The theory of Thomas and Fermi, now known as Thomas-Fermi theory provides a functional 

form for the kinetic energy of a non interacting electron gas in some known external potential 

 as a function of the density. It is a local density functional (usually due to impurities)(ݎ)ܸ
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(LDF) and is based on a semi classical approximation. The formulation becomes exact for a 

uniform electron gas. 

In a uniform system of Fermions of spin ܵ = 1 2⁄  in 3 dimensional physical spaces, the Fermi 

momentum kF is related to the density ݊(ݎ) via the following relation: 

      ସగ
ଷ
݇ிଷ/ (ଶగ)య

ஐ
= ே

ଶ
⇒ ଶ݊ߨ3 = ݇ிଷ                                                                        

The kinetic energy of the uniform system is given by 
 
     ܶ = ∑ ∑ ℏమమ

ଶఙழಷ = 2 ஐ
(ଶగ)య

∫ ଶಷ݇ߨ4
 ݀݇ ℏమమ

ଶ
= ஐ

గమ
ℏమ

ଵ
݇ிହ                                               (1) 

 
The total electron number can be obtained in a similar fashion: 
 
     ܰ = ∑ ∑ 1ఙழಷ = 2 ஐ

(ଶగ)య
∫ ଶಷ݇ߨ4
 ݀݇ = ஐ

ଷగమ
݇ிଷ                                                              (2) 

 
One can thus calculate the kinetic energy per unit volume or per particle using 3ߨଶ݊ = ݇ிଷ in 
equation (1) to give: 
 
      ܶ = Ω ଷ

ହ
ℏమಷ

మ

ଶ
݊ = ܰ ଷ

ହ
ℏమಷ

మ

ଶ
                                                                                                   (3) 

 
In a non-uniform system where the density is a function of the position ݊(ݎ)one assumes the 

same functional form (the semi classical approximation) and thus the Fermi momentum 

becomes position-dependent: 

 
(ݎ)݊         = ಷ

మ()
ଷగమ

                                                                                                                      (4) 
 
and the kinetic energy within TF becomes; 
 
        ܶ[݊] = ∫݀ଷݎ ଷହ

గమಷ
మ()

ଶ
 (5)                                                                                              (ݎ)݊

 
The relationship between the external potential and the density is obtained by minimizing the 

total (here the kinetic plus external) energy with respect to the density with the constraint of 

constant electron number: subject to the normalization condition∫ ݎ݀(ݎ)݊ = ܰ; 

           ఋ
ఋ

(ܶ + ݎଷ݀(ݎ)ܸ(ݎ)݊∫ − ߤ ∫ (ݎଷ݀(ݎ)݊ = 0                                                                
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In the semi classical approximation, the local Fermi momentum is obtained by solving the 

above minimization equation: 

 
ߤ                    = ℏమಷ

మ()
ଶ

+                                                       (6)                                                                                                (ݎ)ܸ
 
Where the Lagrange multiplier,ߤ =  ௧௧/߲ܰ is identified as the equilibrium chemicalܧ߲

potential of the system. This semi classical approximation is valid if the variations in the 

external potential are weak in the scale of the Fermi wavelength:|∇V(r)|/V(r)| ≪ k(r).  

1.2.Definition:  

A function f is said to be in ܮ if [∫ ଵ/[ݔ݀|(ݔ)݂| ≡ ||݂|| is finite,1 ≤ ܽ ≤ ∞. 

 ||݂||ஶ ≡ ݂ If .|(ݔ)݂| sup ݏݏ݁ ∈ ܮ ∩ ܽ  withܮ < ܾ  

then ݂ ∈ ௧ܮ  for all ܽ ≤ ݐ ≤ ܾ. ||݂||௧ ≤ ||݂||ఒ||݂||ଵିఒ , 

where ିܽߣଵ + (1 − ଵିܾ(ߣ =  .ଵିݐ

By Sobolev Inequality, we have: 

టܶ ≡ ∫ |∇߰|ଶܸ݀ ≥ ܵ൫∫ߩటଷ ܸ݀൯
ଵ/ଷ

                                                                                          (7) 

where, ߩట = |߰|ଶ, and  S, some numerical constant. 

Lieb (1981), using Holder's Inequality,  

(∫ |݂|)ଵ/ ∗ (∫݃)ଵ/ ≥ ∫ |݂݃|,   ଵ


+ ଵ


= ݍ, ݀݊ܽ 1 > 1                                                  (8) 

And letting ݂ = |߰|ଶ = ݃,ߩ = |߰|ସ/ଷ = ଶ/ଷߩ , = 3, ݍ = 3/2.  the Sobolev inequality is 

refined to give a weaker but more useful inequality: 

ܵ(∫ ଷ)ଵ/ଷߩ ∗ ቀ∫ߩቀ
మ
యቁ(యమ)ቁ

ଶ/ଷ
≥ ߩ∫  ,ଷ/ଶ  Butߩߩ∫ = 1 therefore equation (7) can be written as:      

టܶ ≡ ∫ |∇߰|ଶܸ݀ ≥ ܵ൫∫ߩటଷ ܸ݀൯
ଵ/ଷ

≥ ܭ ହ/ଷ݀ߩ∫ ܸ  , where  ܭ ≅ 2.8712   

Using the above inequalities, the kinetic energy density is seen to be proportional ∫ߩହ/ଷ ݀ଷݎ 

so that kinetic energy per particle is: 
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టܶ ≡ ܭ ହ/ଷ݀ଷߩ∫                  ݎ

For an interacting system, if the form of the interaction potential is known as a function of the 

ground state density, such as in the density functional theory, one can also add this 

contribution to the external potential ܸ(ݎ), and solve the non-linear equations again, now with 

an effective potential ܸ = ܸ + ுܸ + ௫ܸ ; 

 
(ݎ)ߩ             = ଵ

ଷగమℏయ
{2݉ ቂߤ − (ݎ)ܸ − ݁ଶ ∫݀ଷݎ′ ఘ(ᇲ)

|ିᇲ|
− ௫ܸ[(ݎ)ߩ]ቃ}ଷ/ଶ                               (9) 

 
 
Here, the newly added terms are respectively the Coulomb interaction (Hartree potential) and 

the exchange-correlation potential seen by an electron. The latter has a simple expression in 

the local density approximation (LDA) of the density functional theory. Within the Hartree-

Fock theory, the exchange energy of the Jellium model was derived as the function of the 

density. From this functional, it is possible to deduce an exchange-only potential which is 

obtained by differentiating the exchange energy with respect to ߩ.  Using this potential in the 

TF equation above yields the Thomas-Fermi-Dirac equation in a suitable unit: 

 
ߤ  = (ݎ)ܸ + ݁ଶ ∫ ݀ଷݎ′ ఘ(ᇲ)

|ିᇲ|
− ଵ/ଷ(ݎ)ߩߙ + ℏమಷ

మ()
ଶ

                                               (10)   
     
That is, for a given ߤ  and a given external potential, the solution needs to be found iteratively 

as the equation has become an integral equation. 

One can transform the Thomas-Fermi equation into the integral form (10) into a differential 

form. The function to search for will be the electrostatic potential generated by  (ݎ)ߩ. We 

introduce this potential as: 

(ݎ)ܷ               = ݁ ∫݀ଷݎ′ ఘ(ᇲ)
|ିᇲ|

  

It must satisfy the Poisson equation: 

(ݎ)ܷ∆    =  (11)                                                                                                           .(ݎ)ߩ݁ߨ4−
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From Eq. (9) one extracts the electron density: 

(ݎ)ߩ               = − ଷଶగమ
ଷయ

(2݉)
య
మ[ߤ − ݁ ܸ௫௧.(ݎ) − [(ݎ)ܷ݁

య
మ.                                                   (12)                                  

This is the Thomas-Fermi equation in differential form.  

In summary, we can write the energy functional of Thomas-Fermi as: 

Ε[ߩ] = ∫ܭ ହ/ଷ݀ଷ(ݎ)ߩ ݎ − ଷ݀(ݎ)ߩ(ݎ)ܸ∫ ݎ + ଵ
ଶ∬

ఘ()ఘ(ᇲ)ௗయௗయᇱ
|ିᇲ|

+ ℧                             (13) 

In suitable units(݁ଶ = 1), where: (ݎ) = ∑ ܼ|ݎ − ܴ|ିଵ

ୀଵ ,℧ = ∑ ܼ௦ଵஸ௦ழ!ଵஸ ܼ|ܴ௦ − ܴ|ିଵ 

And ܭ ≅ 2.8712 numerically, the constraint on (ݎ)ߩ is (ݎ)ߩ ≥ 0   &   ∫ ݎଷ݀(ݎ)ߩ = 1 the 
functional ߩ →  .is convex [ߩ]ܧ

The justification for this TF functional is this: 

 The first term in equation (13) is roughly the minimum quantum-mechanical kinetic 

energy of N electrons needed to produce an electron density(ݎ)ߩ. The fact that 

electrons are fermions is crucial here. This minimum energy is, in fact, the semi 

classical energy and is known to be exact in the limit where the shape of (ݎ)ߩ is fixed 

and N goes to ∞ The first term is also conjectured by Lieb and Thirring (1976) to be a 

lower bound to the electronic kinetic energy when the density is (ݎ)ߩ. 

 The second term is the attractive interaction of the N electrons with the K nuclei, via 

the Coulomb potential V. 

 The third term is approximately the electron-electron repulsive energy. 

 ℧ is the nuclear-nuclear repulsion. While it is a constant, it is an important constant 

because it determines whether or not binding can occur, i.e., whether or not the energy 

can be lowered by moving the nuclei far apart from each other. 

 The minimum energy is gotten by first taking  the functional derivative of equation 

(13) multiplying the result by (ݎ)ߩ and integrate and finally subtracting the output 

from the same which yields: 

 Ε = − ଶ
ଷ ߩ∫

ହ/ଷ ݀ଷݎ − ଵ
ଶ                                          (14)                   ݎଷ݀(ݎ)ߩ(ݎ)ܷ∫
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1.3      The Free Energy Functional 

Consider the foregoing results when the temperature of the system is low, but non-zero. 

A thermodynamic system can also be described in terms of Helmholtz free  energy, F(T,V,N), 

the energy available for work at temperature ߠ. It is given by  

= ܨ  ܷ –                                                       (15)                                                                                                                          ,ܵߠ 

Where ܵ is the entropy. Like internal energy ܷ,ܨ is a state function, and takes its minimum 

value under every given constraint..  

The minimization of Helmholtz free energy is a very useful principle. Many features such as 

phase transitions and formation of complex patterns in equilibrium systems can be analyzed 

using this principle. For our purpose, we construct the entropy S ≡ - σ and thereby construct 

the free energy functional; Let  ݎ)ߩ,  be the density matrix of a system, then the entropy ܰ/(’ݎ

is defined by 

   ( , ') ( , ')NTr r r In r r                                                                                         (16) 

where  

 ( , ') ( , ) 1Tr r r r r dr    

Under the approximation  

 ( , ') ( , ) ( )r r r r r     We have the entropy functional; 

   [ ] ( , ') ( , ') ( ) ( )N r r In r r dr S N r In r dr                                     (17) 

( ) ( ) ( 0)S N r In r dr                                                                                               (18) 
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Now at some finite temperature, Let ρo(r) be the ground state density and ρ1(r) the excited 

density, i.e 1( ) ( ) (1 ) ( ), [0,1]or r r         the energy functional per particle is 

5/3 3 3[ ] ( ) ( ) ( ) ( ) ( ') ( ') '
2
gk r dr V r r dr r r V r r d r d r                                              (19) 

Hence the Helmholtz free energy functional per particle is: 

)(][][][ SUF                                                                                          (20) 

where g is the strength of interaction, and θ is a measure of temperature. With the constraint

( )r dr N Z   , we have, to minimize: 

 

5/3 3 3 3

3 3

[ ] ( ) ( ) ( ) ( ) ( ) ( ') ' ( ) ( )
2

( ) ( ) 1

gF k r dr V r r dr r y V r r d r d r r In r d r

r In d r r d r

       

    

    

  

   

 
                            (21) 

where   1( ) ( ) (1 ) ( ), [0,1]or r r         and λ is the Lagrange multiplier. This F[ρ] is 

strictly convex and therefore has a unique minimum That is, 

2/3 3[ ( )] 5 ( ) ( ) ( ') ( ') ' ( ( ) 1 ( )) 0
( ) 3

F r k r V r g r V r r d r In r In N
r

      


                                       (22)     

Clearly equation (22) has a unique solution; it shall be solved under Coulomb and Yukawa 

potentials respectively: ( ) / | '|, ( ) exp( | ' |)/ | '|V r Z r r V r Z b r r r r       

2.    Results. 

Equations (11), (12) and (13) were computed together with Coulomb potential under the 

influence of electron-electron repulsive energy (interaction) and the following results 

depicted in figures 1 & 2 were obtained for a very small and very large neutral atom 
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Similarly, equations (11), (12) and (13) were computed together with Yukawa potential under 

the influence of electron-electron repulsive energy (interaction) and the following results 

depicted in figures 3 & 4 were obtained for a very small and very large neutral atom 

 

2.1.     Perturbed Under Coulomb Potential:  

In this case, the potential ܸ(ݎ) is written | ' |Z r r  , so that one solves

3
2 /35 ( ') '( ) ( ) ( ) 0

3 | ' |
k Z r d rr g In r In r

r r r


          
                                                  (23) 

Under the condition that g = 1, θ = 1, λ – θ → λ we have 

   
3

2 /35 ( ') '( ) ( ) ( ) 0
3 | ' |
k Z r d rr In r In r

r r r


         -
                                                     (24) 

Let η be a perturbation in ρ such that it is possible to write the latter as: 

                                                                                                                                (25) 

where τ is the unperturbed electron density and the solution of 

3
2 /35 ( ') '( ) 0

3 | ' |
k Z r d rr g

r r r
     -

                                                                                 (26) 

Hence using (24), equation (23) can be written as 

   2/3 35 ( ) ( ) ( ') ( ') ( ') ' ( ( ) ( )) ( ) 0
3
k Zr r g r r V r r d r In r r In r

r
                                                       (27) 

Applying binomial theorem to the first and the fourth terms in equation (26) we can write the 

following expressions 
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3 3

2/ 3 ( 1/3)5 10 ' ( ') '( ) ( ) ( ) ( ') ( ( ))
3 9 | ' | | ' |

( )( ) 0
( )

k k Z d r r d rr r r g r g In r
r r - r r r

rIn r
r


     

   


    

   

  -                                        (28) 

But, 
3

2/35 '( ) ( ') 0
3 | ' |
k Z d rr g r

r r r
      -

                                                                                  (29)    

Hence 
3

( 1/3)10 ( ') ' ( )( ) ( ) 0
9 | ' | ( )
k r d r rr r g

r r r
 

  


    -
                                                                           (30) 

Immediately, the potential of perturbation, ( )r , attached to the internal core is identified as 

3( ') '( )
| ' |
r d rr
r r

   -
,                                                                                                           (31) 

and using the concept of Dirac distribution  on (30) we have;  

2 ( ) 4 ( )r r                                                                                                                (32)  

So that equation (29) can be written as; 

2 /3

( ) ( )
( ) 10 ( )

9

g r r
r k r

 


 
 


                                                                                                    (33) 

Equations (32), (31), (17) and (24) were computed together and the following results depicted 

in figures 5 & 6 were obtained for a very small and very large neutral atoms. 

 

2.2     Perturbed Under Yukawa Potential 

In this case, the potential V(r) is written brZe r , so that one solves; 

| '|
2 /3 35 ( ) ( ') ( ') ' ( ) ( ) 0

3

b r rk Zer g r V r r d r In r In r
r

      
 

                                 (34) 
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Under the condition that g = 1, θ = 1, λ – θ → λ we have 

   2 /3 35 ( ) ( ') ( ') ' ( ) ( ) 0
3

bxk Zer r V r r d r In r In r
r

    


                                           (35) 

Following the same procedure as in section 3.1 above, we have the following equations 

2 2( ) 4 ( ) ( ) 2 ( )r r b r b r                                                                                       (36)  

2 /3

( ) ( )
( ) 10 ( ) 1

9

r r
r k r

 



 


                                                                                                      (37) 

Equation (34), (35), 24 and (17) were computed together and the following results depicted in 

figures 7 & 8 obtained for a very small and very large neutral atoms. 

3.      Discussion 
Figures 1&2 and 3&4 are plots of the atom under constraints which is equivalent to the 

excited state of the atom. The imposed constraints can be interpreted as the chemical potential 

of the electrons. It is also observed that atoms under Coulomb potential are more negative, 

that is more bound and stable than the Yukawa because Coulomb potential is long ranged 

while Yukawa potentials is short ranged.  

The plots revealed that negativity increases with nuclear charge, Z, making larger atoms more 

stable. This is one of the outstanding features of TF theory  

3.1              Comparisons 
The various plots in sections 3.1 and 3.2 clearly reveal the differences between electron 

density graphs and their corresponding electron radial distributions. Under Coulomb potential, 

when temperature parameter, θ is non zero, there is an increase in the radial spread of the 

electron density and their corresponding electron radial distributions, whereas when θ is zero, 

there is a decrease in the radial spread of the electron density and their corresponding 
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electron radial distributions. In particular, figure 6d, the radial spread of electron radial 

distribution is 2.795 for θ = 1 while figure 2d, the radial spread electron radial distribution is 

0.351 for θ = 0. Similar effects are noticed under Yukawa potential.  

 
3.2     Suggestions for Further Studies 

This work has been charted towards stability (at zero temperature) and weak excitation of 

atoms and molecules at non zero but low temperature. These have been observed under two 

potentials, (The Coulomb and the Yukawa).  

All the obtained results should be treated under Dirac correction (i.e. correlation taken into 

account) and also under Scott correction. The relevant equations are likely to be harder to 

solve and the computational work more intricate. 
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5.     Appendix 

 

Figure 1, Z=1 Coulomb 

 

Figure 2 Z = 90 (Th) Coulomb 

Figures 1&2: (a) the plot of Coulomb internal potential ܷ(ݎ) = ∫ ′ݎ݀ ఘ(ᇲ)
|ିᇲ|

  versus radial distanceݎ, (in Bohr 
units). (b) The plot of minimum energy, ܧ ≅ +ݎହ/ଷ݀ଷ(ݎ)ߩ∫  (c) .ݔ versus parameter/variable ݎଷ݀(ݎ)ߩ(ݎ)ܷ∫
The plot of electron density, (ݎ)ߩ ≅ ߤ} − ܸ௫௧(ݎ)−  ଷ/ଶversus radial distance r. (d) the plot of electron{(ݎ)ܷ
distribution (ݎ)ܦ =  versus radial distance. Plots 1, (a) to (d) are results of computations under Coulomb (ݎ)ߩଶݎ
potential, ܸ௫௧(ݎ) = ܼ with  ݎ/ܼ− = ,݊݁݃ݎ݀ݕܪ,1  and Plots 2, (a) to (d) are results for  Z = 90, Thorium (ܪ)
(Th) likewise. 
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Figure 3  Z = 1, Hydrogen (H) , Yukawa potential 

 

Figure 4  Z = 90, (Th) Yukawa potential 

Figures 3&4: (a) the plot of Yukawa internal potential ܷ(ݎ) = ′ݎ݀∫ ఘ(ᇲ)ష್ೝ

|ିᇲ|
  versus radial distanceݎ, (in Bohr 

units). (b) The plot of minimum energy, ܧ ≅ +ݎହ/ଷ݀ଷ(ݎ)ߩ∫  (c) .ݔversus parameter/variable ݎଷ݀(ݎ)ߩ(ݎ)ܷ∫
The plot of electron density, (ݎ)ߩ ≅ ߤ} − ܸ௫௧(ݎ)−  ଷ/ଶversus radial distance r. (d) the plot of electron{(ݎ)ܷ
distribution (ݎ)ܦ =  versus radial distance. Plots of figure 3, (a) to (d) are results of computations under (ݎ)ߩଶݎ
Yukawa potential, ܸ௫௧(ݎ) = −ܼ݁ି/ݎ  with ܼ = ,݊݁݃ݎ݀ݕܪ,1  and Plots of figure 4, (a) to (d) are results (ܪ)
for Z = 90, Thorium (Th) likewise. 
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Figure 5 Z = 1, (H) perturbed Coulomb 

 
Figure 6, Z = 90,  (Th) ,Perturbed Coulomb 

Figures 5&6: (a) the plot of perturbed Coulomb internal potential ߮ఎ(ݎ) = ′ݎ݀∫ ఘ(ᇲ)
|ିᇲ|

  versus radial distanceݎ, 
(in Bohr units). (b) The plot of entropy ܵ ≅ −(ܰ)݈݃ܰ  The plot of (c) .ݔ versus some parameter ݎଷ݀(ߩ) logߩ∫
perturbation of electron density, (ݎ)ߟ ≅ ఛ()ఝആ()

భబೖ
వ ఛ()మ/యାఏ

 with ߠ = 1versus radial distance r. (d) the plot of perturbed 

electron density, (ݎ)ߩ = (ݎ)߬ + ߣ ݁ݎℎ݁ݓ,(ݎ)ߟߣ = 1 and perturbed electron  radial distribution (ݎ)ܦ =  (ݎ)ߩଶݎ
versus radial distance. Plots of figure 5, (a) to (d) are results of computations under Coulomb potential, ܸ௫௧(ݎ) =
ܼ with  ݎ/ܼ− = ,݊݁݃ݎ݀ݕܪ,1  and Plots of figure 6, (a) to (d) are results with Z = 90, Thorium (Th).(ܪ)
likewise. 
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Figure 7 Z = 1 (H) Perturbed, Yukawa. 

 

Figure 8 Z = 90 (Th) Perturbed, Yukawa. 

Figures 7&8: (a) the plot of perturbed Yukawa internal potential ߮ఎ(ݎ) = ∫ ′ݎ݀ ఘ(ᇲ)
|ିᇲ |

  versus radial distanceݎ, (in 
Bohr units). (b) The plot of entropy ܵ ≅ −(ܰ)݈݃ܰ  The plot of (c) .ݔ versus some parameter ݎଷ݀(ߩ) logߩ∫
perturbation of electron density, (ݎ)ߟ ≅ ఛ()ఝആ()

భబೖ
వ ఛ()మ/యାఏ

 with ߠ = 1versus radial distance r. (d) the plot of perturbed 

electron density, (ݎ)ߩ = (ݎ)߬ + ߣ ݁ݎℎ݁ݓ,(ݎ)ߟߣ = 1 and perturbed electron  radial distribution (ݎ)ܦ =  (ݎ)ߩଶݎ
versus radial distance. Plots of figure 7, (a) to (d) are results of computations under Yukawa potential, ܸ௫௧(ݎ) =
ܼ with  ݎ/ܼ− = ,݊݁݃ݎ݀ݕܪ,1  and Plots of figure 8, (a) to (d) are results with Z = 90, Thorium (Th).(ܪ)
likewise.  
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